Vanishing geodesic distance for right-invariant Sobolev metrics on diffeomorphism groups
نویسندگان
چکیده
منابع مشابه
Geodesic Distance for Right Invariant Sobolev Metrics of Fractional Order on the Diffeomorphism Group
We study Sobolev-type metrics of fractional order on the group of compactly supported diffeomorphisms Diffc(M), where M is a Riemannian manifold of bounded geometry. We prove that the geodesic distance, induced by the Riemannian metric, vanishes if the order s satisfies 0 ≤ s < 1 2 . For M 6= R we show the vanishing of the geodesic distance also for s = 1 2 , and for dim(M) = 1 we show that the...
متن کاملGeodesic Distance for Right Invariant Sobolev Metrics of Fractional Order on the Diffeomorphism Group. Ii
The geodesic distance vanishes on the group Diffc(M) of compactly supported diffeomorphisms of a Riemannian manifold M of bounded geometry, for the right invariant weak Riemannian metric which is induced by the Sobolev metric Hs of order 0 ≤ s < 1 2 on the Lie algebra Xc(M) of vector fields with compact support.
متن کاملCurvatures of Sobolev Metrics on Diffeomorphism Groups
Many conservative partial differential equations correspond to geodesic equations on groups of diffeomorphisms. Stability of their solutions can be studied by examining sectional curvature of these groups: negative curvature in all sections implies exponential growth of perturbations and hence suggests instability, while positive curvature suggests stability. In the first part of the paper we s...
متن کاملRight-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle
In this paper, we study the geodesic flow of a right-invariant metric induced by a general Fourier multiplier on the diffeomorphism group of the circle and on some of its homogeneous spaces. This study covers in particular right-invariant metrics induced by Sobolev norms of fractional order. We show that, under a certain condition on the symbol of the inertia operator (which is satisfied for th...
متن کاملSobolev Metrics on Diffeomorphism Groups and the Derived Geometry of Spaces of Submanifolds
Given a finite dimensional manifold N , the group DiffS(N) of diffeomorphism of N which fall suitably rapidly to the identity, acts on the manifold B(M,N) of submanifolds on N of diffeomorphism type M where M is a compact manifold with dimM < dimN . For a right invariant weak Riemannian metric on DiffS(N) induced by a quite general operator L : XS(N)→ Γ(T ∗N⊗vol(N)), we consider the induced wea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Global Analysis and Geometry
سال: 2019
ISSN: 0232-704X,1572-9060
DOI: 10.1007/s10455-018-9644-y